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Abstract

Particle dampers (PDs) have the advantages of being simple in geometry, small in volume and applicable
in extreme temperature environments. Experimental studies have shown that PDs can offer considerable
potential for suppressing structural resonant conditions over a wide frequency range. In this paper, the
nonlinear characteristics of PDs are studied experimentally in a series of response-level-controlled tests. The
effect of the geometry is studied and a method is developed to model the nonlinear damping of PDs as
equivalent viscous dampers that can be applied directly to engineering structures at the design stage.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A particle damper (PD) is a device with one or more cavities filled with dry granular solids. A
particularly important aspect that contributes to the unique properties of granular materials is
that the interactions between individual grains (and between grains and the container walls) are
dissipative because of surface friction and the inelasticity of collisions. An overwhelming
advantage of PDs, compared with conventional damping devices that employ viscoelastic
materials, is that PDs can operate in extreme temperature conditions when using metallic,
tungsten carbide or ceramic particles.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The behaviour of vibrating structures with particle dampers attached to them have been
investigated experimentally [1], where it was shown that PDs are highly effective over a wide range
of frequencies, resulting in several modes of vibration being damped simultaneously. There exist a
large number of parameters affecting the damper performance such as: particle shapes, sizes,
cavity-filling fractions, material properties (viscosity, elasticity, friction coefficients and density),
and cavity shape. Because of this and due to the complex interactions of the loss mechanisms in a
particle damper, it is extremely difficult to define explicitly a PD configuration for a particular
application. Instead, ‘‘rule-of-thumb’’ guidelines for designing PDs have been proposed [2].

Analytical studies require a way of modelling the properties of granular media. Over the last
century, many researchers (particularly physicists) have studied the properties of granular media.
However, the mechanical state of granular matter is still an open and frequently debated question.
For instance, to date, there is no consensus on how to express the macroscopic constitutive
relations solely from microscopic considerations under various boundary conditions or loading
histories [3].

The mechanics of granular materials is often studied by formulating the macro-behaviour in
terms of micro-quantities [4], i.e. the dynamic behaviour is derived from the analysis of individual
particles. In order to reduce computational effort, simplifying assumptions are frequently made.
A two-dimensional (2D) analysis, based on molecular dynamics principles, has been used to study
the effects of frequency and amplitude on the response of a container filled with particles [5]. In
this study, an effective damping parameter, which describes an equivalent linear oscillator with
the same damping properties, is defined by dividing the averaged dissipated power under
stationary vibration with the amplitude of input energy. More complicated models, including
three-dimensioinal (3D) behaviour and particle rotation, have been developed [2,6] and used to
simulate the response of dampers containing small numbers of particles. By solving the equations
of motion of the entire set of particles at each time step, the state of the system can be obtained
from a given initial condition. However, in practical applications such as the case described in
Ref. [1], PDs often contain tens of thousands of particles. The prediction of the response of a
structure with such a damper attached is computationally very expensive.

In contrast, experiments can reveal the collective behaviour of PDs more accurately. As PDs are
easy to make and install on a structure, it is relatively simple to investigate their dynamic
behaviour via controlled experiments [7]. This paper presents the results from a series of dynamic
tests of PDs on a SDOF test rig. The energy dissipation mechanism, which characterises the
nonlinear damping, is represented by a discrete parameter model that can be employed in the
design of PDs.
2. Dynamic behaviour of PDs

The test rig employed for all the experimental studies is shown in Fig. 1. The rig was designed
such that the first resonant frequency (246Hz) was well below the next measured structural
resonance, allowing the rig to effectively behave as a single degree of freedom (SDOF) system.
The rig comprised a hollow block or mass that housed the particle damper, the block being rigidly
connected to a spring (a section of a rectangular tube) which in turn was ‘grounded’ to a very stiff
support structure. The mass of the block was 0.780 kg. The stiffness of the frame spring was found
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Fig. 1. SDOF test rig.
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(from the resonant frequency) to be 2.017� 106 N/m. The SDOF system was excited in the
horizontal plane by an electrodynamic exciter. The PDs used in the tests comprised of a steel
container enclosing a cylindrical cavity. The cavity was filled to approximately 95% volume with
0.8mm diameter steel spheres, the mass of the particles being 90 g. Controlled stepped-sine tests
were carried out using SigLab, a dynamic signal analyser integrated with MATLAB. SigLab
generates the stepped-sine signal which is amplified and then input into the exciter.
Simultaneously, SigLab can record the response of the system, which allows a controlled output
response at a pre-set level via a close-loop control system to be maintained during testing.

Frequency response functions (FRFs) were measured in terms of the acceleration of the block
(measured using a B&K miniature accelerometer) divided by the input force (measured using a
force gauge). The frequency range of interest (220–260Hz) encompassed the first resonant
frequency of the test rig. The typical collective or macro-dynamic behaviour of a particle damper
attached to the SDOF system, presented as a set of frequency response functions, is shown in
Fig. 2. For these results, the diameter and depth of the cavity were 39.7 and 15.9mm, respectively.
The dashed line is the FRF of the system with an empty damper — the cavity is not filled with the
granular material. This FRF was found to be independent of the excitation level. The FRFs,
marked 1, 2, 3 and 4, were measured with the filled damper at response levels 0.1g, 1g, 4g and 8g.
It can be seen that at the very low response level (0.1g) the particles behave as an added mass,
which simply causes the system’s resonant frequency to drop from 246Hz to about 234Hz. With
the increase in the excitation level, the damping rises dramatically and the resonant frequency of
the SDOF system shifts gradually towards that measured with the empty particle damper (FRF
marked 11 in Fig. 2). When the response level reaches 12g (FRF marked 5), the resonant
frequency is 246Hz — the same as when the particle damper was empty. Further increases in the
response level to 16g, 20g, 25g, 30g, 35g and 40g (FRFs marked 6–11) result in an almost
unchanged resonant frequency and a reduction in the damping behaviour.
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Fig. 2. Dynamic behaviour of SDOF system with a PD (a=0.4).
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The dynamic behaviour of the PDs can be explained by the mechanism of collision and friction.
The collision and friction between particles and between particles and the walls dissipate the
kinetic energy of the vibrating system. When the response level is very low (51g), there is almost
no relative motion between particles and between particles and the walls. There is little damping
as the PD simply plays the role of an added mass. When the response level is close to 1g, the
inertia forces of the particles on the top (free) surface exceed the static friction forces, locking
them together. These particles move in the vicinities of their original positions. The movement of
these layers dissipates energy (via friction), producing the FRF shown as curve 2 in Fig. 2, which
is approximately 7 dB lower in amplitude compared with curve 1.

As the excitation level is increased, the depth of moving particles increases with an increase in
the dissipated energy. With further increases in the excitation amplitude, particles tend to roll over
one another (reducing dissipated energy), until eventually all the particles in the cavity display a
form of convective motion. As the amplitude is increased further, the particles display a gas-phase
character [1,5]. In the gas phase, the particle friction interaction is substantially reduced, which
results in an effective damping decrease. This can be seen in Fig. 2, when the response levels are
above 12g (curves 5–11).

It is interesting to note that there appears to be a stick-slip friction mechanism present that
depends on the frequency of excitation. In Fig. 2, at very low (p1g) or very high (420g)
acceleration response levels, where the friction mechanism does not dissipate significant vibra-
tion energy, the FRF curves are relatively smooth. For response levels between 1g and 20g,
the FRF curves display fluctuations. A typical FRF, at a response level of 8g, is shown in Fig. 3.
The stick-slip process is denoted by points A–B–C on the FRF. From A to B, clusters of
particles display no relative motion until the slip process starts at frequency B. When slip
occurs, the particles are activated and the level of the FRF drops to C. The process is continuously
repeated as the frequency of the excitation changes, which results in fluctuations appearing
in the FRF as shown in Fig. 3. This process was independent of the sequence of the tests in
that several tests were repeated, with the same configuration, and exactly the same phenomena
were observed.
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Fig. 3. Demonstration of friction: stick-slip process.
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3. PDs with geometry variations

The performance of a PD depends on several parameters. One of the crucial parameters is the
cavity geometry. With the same size, material and almost the same volume of particles, five
different geometries were tested as detailed in Fig. 4 and Table 1. The ratio of depth L to diameter
D is defined as a, a ¼ L=D.

The results shown in Figs. 2, 5–8 correspond to PD geometries of a ¼ 0:4, 0.2, 0.6, 0.8 and 1.0
respectively. The controlled output response levels were 0.1g, 1g, 4g, 8g, 12g, 16g, 20g, 25g, 30g,
35g and 40g respectively for these tests.

By comparing the FRFs in Figs. 2, 5–8, it can be observed that the cavity geometry plays a very
important role in the dynamic behaviour of particle dampers. With increasing values of a, the
transition from solid to convective (fluidisation) and then to gas-like behaviour occurs at a lower
excitation level. This phenomenon can be explained in general terms by considering the relative
magnitude of static and dynamic forces acting on particles at different positions in the cavity.
When at rest, the pressure distribution is controlled by gravity — if one were to assume
hydrostatic pressure, average normal forces at contact points would increase linearly with depth.
For relative motion to occur under dynamic loading, normal and/or tangential inertia forces have
to exceed the static ones locking the particles together. For example, sliding can occur where
tangential forces exceed the product of the normal force and the coefficient of friction. Thus, the
static pressure distribution gives an indication of the ease with which fluidisation occurs under
excitation without resorting to the calculation of the dynamic pressure (and hence contact
condition), by, for example, using the discreet element method [6]. A simple, approximate
assessment method, such as the consideration of static pressure, is of particular value in the design
of dampers where large numbers of particles (well in excess of 5000 particles for the dampers
considered in this paper) make the DEM method computationally very demanding.

In a contained granular medium, static pressure does not increase hydrostatically. One of the
simplest models is Janssen [4] for a cylindrical container containing particles that has its polar axis
parallel to the gravitational field. In this approach, a single parameter K is used to describe the
way in which the stress field of the particles tends to be redirected perpendicularly to the initial
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Table 1

Dimensions of PDs used

a 0.2 0.4 0.6 0.8 1.0

D (mm) 50.0 39.7 34.7 31.5 29.2

L (mm) 10.0 15.9 20.8 25.2 29.2

Volume (mm3) 19635 19682 19670 19639 19554

D

L 

1

1 3 

Fig. 4. Design of cavity (dimensions in mm).

Fig. 5. FRFs of PD with a=0.2.
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load [4]. In the configuration used in the experiments described in this paper, the polar axis of the
cylinder is horizontal and so a modification to Janssen model is required.

Fig. 9 shows the model for the pressure distribution analysis. The equilibrium condition in the
vertical direction for the particular slice of particles is

Adpv þ F1 þ F2 ¼ rfgA dh; ð1Þ
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Fig. 7. FRFs of PD with a=0.8.

Fig. 8. FRFs of PD with a=1.0.

Fig. 6. FRFs of PD with a=0.6.
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Fig. 9. Pressure distribution model cylindrical dampers.
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in which the surface area A ¼ 2xL, r is the mass density of a particle and f the volume fraction,
and F1, F2 are the friction forces on the straight walls and the circular wall, respectively:

F1 ¼ 4msKpvx dh; ð2Þ

F2 ¼ 2LmsKpv sin a dh: ð3Þ

In these equations, ms is the static friction coefficient between grains and walls and K is the Janssen
parameter or coefficient of redirection towards the wall of the vertical stress applied to the
material [4]. Substituting Eqs. (2) and (3) into Eq. (1) gives

dpv

dh
þ msK

2

L
þ

1

R

� �
pv ¼ rfg: ð4Þ

Let 1/Re=1/L+1/(2R); then Eq. (4) becomes

dpv

dh
þ

2msK

Re

pv ¼ rfg; ð5Þ

which can be rewritten as

d

dh
exp

2msK

Re

h

� �
pv

� �
¼ rg exp

2msK

Re

h

� �
: ð6Þ

Integrating Eq. (6) gives

pv exp
2msK

Re

h

� �
¼

rfgR

2msK
exp

2msK

Re

h

� �
þ C; ð7Þ

where C is a constant to be determined from the initial conditions. If it is assumed that the initial
pressure on the top of the structure is pv0, then the constant C is

C ¼ pv0 �
rfgR

2msK
ð8Þ
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and Eq. (7) becomes

pv ¼
rfgRe

2msK
1 � exp �

2msK

Re

h

� �� �
þ pv0 exp �

2msK

Re

h

� �
: ð9Þ

It is noted that an equivalent cylindrical Janssen model to Eq. (9) exists, which has a radius
R ¼ Re.

If the parameters in Eq. (9) are assumed to be ms ¼ 0:74 (steel to steel), K ¼ 0:7 (suggested by
Oda and Iwashita [3]), r=7.8 g/cm3, f=0.58 (measured) and pv0 ¼ 0 (particles are in equilibrium
under their own weight), then for the five PDs with different a values, a group of curves, Pv versus
h, can be drawn according to expression (9). This is shown in Fig. 10.

The curves show that the static pressure pv saturates exponentially with depth h. Pressure
saturation occurs because contact point friction allows the medium to carry shear loads in the
vertical plane. At saturation pressure, the weight of a layer of particles is supported by the side
walls by this mechanism, thus further increases in pressure do not occur [4]. For the damper
geometries considered, saturation occurs at a depth of approximately 20mm when a=0.2 and
30mm when a=0.4. Where a=0.6 and above, saturation does not occur in the dampers and peak
pressures are up to 50% higher. Initially, this might seem to disagree with the hypothesis that
increased static pressure reduces the ease with which fluidisation occurs. However, it is important
to remember that the dampers have circular cross-section so that there are different numbers of
particles at different depths. Also, for a given excitation force, the instantaneous dynamic pressure
varies from damper to damper because of the change in cross-sectional area. Two parameters are
used here to compare the ease of fluidisation between dampers. The first is the static pressure
normalised by cross-sectional area

pnorm ¼ pstatic

Rn

R0

� �2

; ð10Þ

where Rn and R0 are the radii of the baseline and nth dampers, respectively. This is a measure of
the forces stopping the particles from fluidising. The second is Np, the number of particles in the
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Fig. 10. Static pressure distribution of five different PDs.
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Fig. 11. Number of particles Np against normalised pressure distribution, pnorm:
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damper that are below a given static pressure — indicative of the number of particles that
fluidise at a given excitation level. For the dampers considered, using the condition a=1 as
the baseline, a plot showing these parameters is presented in Fig. 11. It can be seen from this plot
that the low-diameter dampers (large a) contain a greater number of particles at low pressure,
making them easier to fluidise. This can clearly be seen from the experimentally obtained FRFs in
Figs. 2, 5–8.
4. An equivalent viscous damping model

The model used to represent the experimental system is shown in Fig. 12. The effective mass of
the particles is denoted by mp and the nonlinear damping is denoted by ceq. Since the mass m0

(mass of the block) and stiffness k of the system are known, the equivalent viscous damping
coefficient cðiÞeq for the ith response level can be obtained from

cðiÞeq ¼ 2Bi

ffiffiffiffiffiffiffiffi
kmi

p
; ð11Þ

in which Bi is identified by curve fitting to the measured FRF and mi ¼ m0 þ mp. The discrete
nonlinear damping coefficient of the particle damper ceqðvÞ, as a function of velocity, can be
expressed as a continuous function by fitting a curve to the equivalent viscous damping
coefficients cðiÞeq, i ¼ 1; 2; . . . ; n as shown in Fig. 13.

In this example, the curve-fitting function is based on the Gamma distribution function in
probability [8],

ceqðvÞ ¼
A

bGðgÞ
v � m
b

� �g�1

e�ðv�mÞ=b þ B;

with vXm and b; g40; ð12Þ
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Fig. 13. Curve fits of the equivalent damping coefficients as a function of the velocity from Eq. (11).

Fig. 12. SDOF model.
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in which g is the shape parameter, m is the location parameter, b is the scale parameter, and G is
the gamma function which has the formula

GðaÞ ¼
Z 1

0

ta�1e�t dt: ð13Þ

Shape parameters allow the function to take on a variety of shapes. A location parameter simply
shifts the graph to the left or right on the horizontal axis. The effect of the scale parameter is to
stretch out the graph. Parameter A is designated to adjust the gain and parameter B is the
constant to which the function converges. The asymptotic property of the damping dynamic
behaviour is clearly described by the function. To obtain the parameters, an optimisation problem
was constructed using

min
v

1
2

X
i

ceqðviÞ � cðiÞeq

	 
2

: ð14Þ

The parameters are obtained by solving the nonlinear least-squares problem. The curve-fitted
results to the discrete values of the cðiÞeq, i ¼ 1; 2; . . . ; n, are shown in Fig. 13. The parameters
obtained from nonlinear optimisation implementations are listed in Table 2.



ARTICLE IN PRESS

Table 2

Parameters of the nonlinear damping model for Eq. (11)

a g b m A B

0.2 5.1 0.016 0.040 6.1 55.0

0.4 2.3 0.030 0.022 5.5 22.0

0.6 2.0 0.032 0.008 5.2 15.0

1.0 2.0 0.033 0.000 4.3 13.5

W. Liu et al. / Journal of Sound and Vibration 280 (2005) 849–861860
It should be noted that the restriction in the velocity range, vXm, in Eq. (11) indicates that the
model does not cover the low-velocity range, 0ovom. In practice, however, it is only the relatively
high response levels of the PDs that is of concern and the absence of the predictions at low
velocities does not significantly affect the application of the model. As shown in Fig. 13, the
nonlinear damping coefficient in the range 0ovom can be estimated approximately by linear
extrapolation.

The functions described by Eq. (11) can then be used in a finite element model for prediction
purposes.
5. Conclusions

The dynamic behaviour of disc-geometry particle dampers has been characterised. It has been
shown that the damping is strongly dependent on the response level. A stick-slip process was
observed from the FRFs measured at various response levels, which reveals that the vibration
energy is mainly dissipated by the friction between particles and between particles and the walls of
the cavity.

The effect of geometry parameters on the dynamic behaviour of particle dampers was
investigated by changing the diameter and thickness of the cavity simultaneously with the volume
kept constant. It has been shown that the ratio of thickness to diameter of the disk cavity plays an
important role due to the different pressure distributions which in turn control the eventual
motion of the particles. The static pressure distribution of particles in a disk cavity with the polar
axis horizontal was derived, yielding similar result to Janssen’s model. This was used to relate the
damper geometry to the ease of activation.

The nonlinear behaviour of particle dampers was characterised by an equivalent viscous
damping model. The parameters in the model were estimated by solving a nonlinear least-squares
problem. The important parameters contributing to the nonlinear damping curve such as the peak
damping and the convergence damping level are defined by a five-parameter model. The
procedure of modelling the equivalent viscous damping of particle dampers by ceqðvÞ is
experiment-based. It is accurate, physically meaningful and easy to implement. Compared with
the studies based on the microscopic scale such as molecular dynamics or the discrete element
method, it is more efficient and applicable. The model extracted can be applied to other systems
with the corresponding particle damper applied at the stage of design by adding a nonlinear
dashpot at the mesh point of the finite element model of the structure.
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